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ABSTRACT

An analysis of the full non-linear mechanism of condensation nucleation from a

supersaturated vapor suggests that the classical Markovian growth mechanism may not

apply to systems, such as metals, that exhibit pronounced magic-numbered clusters.

Packing of atoms in concentric layers and/or quantum confinement of valence electrons

lead to particular sized metal clusters that are anomalously stable.  They are called magic-

numbered clusters.  Magic-numbered clusters are not explicitly addressed in the Markovian

mechanism that assumes that clusters change size by accommodation or evaporation of one

monomer at a time.  This is a justifiable approximation only if the frequency of all cluster-

cluster collisions is negligible compared with the frequency of the succession of monomer-

cluster collisions required to produce an equivalent sized cluster to the cluster-cluster

collision. The stability of magic-numbered increases the likelihood of collisions between

clusters.  The magic-numbered clusters can therefore affect the nucleation mechanism and

have a significant influence on the nucleation rate from supersaturated metal vapors.
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1. INTRODUCTION

The kinetics of nucleation of metal droplets from a supersaturated vapor is

important to a variety of fields.  Nano-structured materials are often produced using

particles synthesized from condensable vapors.[1]  Since the condensation process is

designed such that growth and coagulation are minimized, the nucleation step determines

the size-distribution and structure of the particles.  Therefore, nucleation kinetics

determines the properties and ultimately the performance of the nano-scale particles.

Controlling trace metal emissions during coal combustion requires an understanding of the

processes that lead to fine particulates; including particle nucleation, growth, and

aggregation.[2]  Liquid metals are used as heat transfer media at elevated temperatures,

particularly in the nuclear power industry.  Accident scenarios for these systems often

involve the release of a supersaturated vapor plume.[3,4]  Accurately modeling the fate of

such a plume depends in part on the condensation kinetics of the vapor.  Accurate

nucleation rate predictions would benefit each of these applications.  The rate predictions

depend in turn on the condensation mechanism.

2. CLUSTER VERSUS MARKOVIAN GROWTH

Consider the reversible aggregation of clusters of size m and n,

nmnm CCC +=+ (1)

where subscripts refer to the number of monomers (atoms in this case) in the cluster.  In the

following discussion, the forward process is called aggregation and the reverse process is

called fission.  If m is restricted to equal one in Equation (1), then the Markov process

commonly used to model nucleation is recovered.[5]  Equation (1) is more general than the



Markov process since it allows clusters to grow by incorporating other clusters rather than

by monomer addition alone.  Although a few authors have previously considered nucleation

by cluster aggregation,[6] I briefly review the governing equations in this Section to

provide a description of my notation and to review the relevant approximations.

The species balance for clusters of size n, given the reactions in Equation (1) is
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where Cn is the number concentration of n-mers and the k's are aggregation and fission rate

constants.  The first summation in Equation (2) represents aggregation and fission of

clusters from(into) smaller clusters and the second summation represents aggregation and

fission of clusters into(from) larger clusters.  The Kronecker delta function accounts for the

special cases of symmetric aggregation and fission.  Detailed balancing relates the fission

rate constant to the aggregation rate constant and the equilibrium cluster concentrations at

saturation, [7]
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Defining an ideal gas cluster activity relative to the cluster concentration at saturation,

eq
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and a scaled rate constant,
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allows a re-casting of Equation (2) in terms of activities,
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Equation (6) is a useful form because activities defined in this way are smooth functions of

cluster size and the scaled rate constants contain all of the information regarding relative

aggregation rates and cluster energetics.

It is often (wrongly) assumed that the Markovian growth mechanism is appropriate

if the scaled rate constant for monomer aggregation is much greater than for cluster

aggregation for each cluster size (n),

nmn kk ,,1
ˆ  ˆ >> (7)

for m>1.  Since the aggregation rate constant (kagg) is a slowly increasing function of cluster

size[8] and the equilibrium cluster concentrations are often modeled as stretched-

exponential decreasing functions,[9] this condition is generally met.  Unfortunately,

Equation (7) is not a sufficient condition for Markovian growth.  Markovian growth is a

justifiable approximation only if the frequency of all cluster-cluster collisions is negligible

compared with the frequency of the succession of monomer-cluster collisions required to

produce an equivalent sized cluster to the cluster-cluster collision.  Although this is often

the case, metals that exhibit strong magic numbered clusters are a potential exception.

Magic numbered clusters are more stable than clusters of one more or one fewer

atom.[10]  Therefore, they are preferentially observed in molecular beam experiments.  At

low temperatures, the observed magic numbers are rationalized in terms of packing of

atoms in concentric layers.  Completion of a face or a complete layer determines the size of

each magic numbered cluster.  Above the cluster melting temperature, a different set of

magic numbers corresponding to filled electronic shells is observed. Here, the shell

structure is a result of quantum confinement of the valence electrons in the cluster.  In



either case, the equilibrium cluster concentration for magic numbered clusters is larger than

for other clusters of similar size.  Therefore, the scaled rate constant in Equation (5) is

anomalously large when n and/or m correspond to magic-numbered clusters.

3. DISCUSSION

The nucleation rate is the rate of formation of clusters larger than a given size.  For

the Markovian growth mechanism, the nucleation rate can be expressed as an analytic

function of the monomer activity.[5]  For cluster growth, Equation (6) must be solved

numerically.[6]  The added computational difficulty associated with the more complex

mechanism is justified only if it results in substantially different nucleation rate predictions.

Metal vapor condensation may present such a case due to the stability of magic numbered

clusters.  Nucleation rate calculations, to be published elsewhere, suggest that the

nucleation rate for cluster growth (J) is larger than for the Markovian growth mechanism

(JMarkov),

]/Exp[ kTGJJ Markov ∆≈ (8)

where ∆G is the magnitude of the oscillatory contribution of the free energy that results in

the magic numbers.  For pronounced magic numbers and/or low temperatures, this can be a

large factor.
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